References
Abbott, C., Coulson, M., Gagné, N., Lacoursière, A., Bajno, R., Dietrich, C., & May-McNally, S. (2021). Guidance on the use of targeted environmental DNA (eDNA) analysis for the management of aquatic invasive species and species at risk. Canadian Science Advisory Secretariat (CSAS).
Allan, E. A., Zhang, W. G., C Lavery, A., & F Govindarajan, A. (2021). Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environmental DNA, 3(2), 492-514. https://doi.org/10.1002/edn3.141
Ando, H., Mukai, H., Komura, T., Dewi, T., Ando, M., & Isagi, Y. (2020). Methodological trends and perspectives of animal dietary studies by non-invasive fecal DNA metabarcoding. Environmental DNA, 2(4), 391-406. https://doi.org/10.1002/edn3.117
Antich, A., Palacin, C., Wangensteen, O. S., & Turon, X. (2021). To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinformatics, 22, 1-24. https://doi.org/10.1186/s12859-021-04115-6
Baillie, S. M., McGowan, C., May-McNally, S., Leggatt, R., Sutherland, B. J., & Robinson, S. (2019). Environmental DNA and its applications to Fisheries and Oceans Canada: National Needs and Priorities. Fisheries and Oceans Canada= Pêches et Oceans Canada.
Barnes, M. A., Turner, C. R., Jerde, C. L., Renshaw, M. A., Chadderton, W. L., & Lodge, D. M. (2014). Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science & Technology, 48(3), 1819-1827. https://doi.org/10.1021/es404734p.
Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology, 10, 1-9. https://doi.org/10.1186/1471-2180-10-189
Beng, K. C., & Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation, 29(7), 2089-2121. https://doi.org/10.1007/s10531-020-01980-0
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2009). GenBank. Nucleic Acids Research, 37(suppl_1), D26-D31. https://doi.org/10.1093/nar/gkm929.
Berry, O. F., Jarman, S. N., & Holleley, C. E. (Eds.). (2023). Applied Environmental Genomics. CSIRO PUBLISHING.
Bohmann, K., Elbrecht, V., Carøe, C., Bista, I., Leese, F., Bunce, M., … & Creer, S. (2022). Strategies for sample labelling and library preparation in DNA metabarcoding studies. Molecular Ecology Resources, 22(4), 1231-1246. https://doi.org/10.1111/1755-0998.13512
Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., … & De Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution, 29(6), 358-367. https://doi.org/10.1016/j.tree.2014.04.003
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., … & Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac, E. (2016). obitools: A unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16(1), 176-182. https://doi.org/10.1111/1755-0998.12428
Brown, C. D., Hanner, R. H., & Docker, M.F. (2025). Optimization of methods for the collection of larval sea lamprey environmental DNA (eDNA) from Great Lakes tributaries. Great Lakes Fishery Commission, Laurentian 2025-01.
Bruce, K., Blackman, R. C., Bourlat, S. J., Hellström, M., Bakker, J., Bista, I., … & Deiner, K. (2021). A practical guide to DNA-based methods for biodiversity assessment. Pensoft Advanced Books. https://doi.org/10.3897/ab.e68634
Brys, R., Halfmaerten, D., Neyrinck, S., Mauvisseau, Q., Auwerx, J., Sweet, M., & Mergeay, J. (2021). Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis). Journal of Fish Biology, 98(2), 399-414. https://doi.org/10.1111/jfb.14315
Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., … & Wittwer, C. T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611-622. https://doi.org/10.1373/clinchem.2008.112797
Buxton, A. S., Groombridge, J. J., & Griffiths, R. A. (2018). Seasonal variation in environmental DNA detection in sediment and water samples. PLoS One, 13(1), e0191737. https://doi.org/10.1371/journal.pone.0191737
Buxton, A. S., Groombridge, J. J., Zakaria, N. B., & Griffiths, R. A. (2017). Seasonal variation in environmental DNA in relation to population size and environmental factors. Scientific Reports, 7(1), 46294. https://doi.org/10.1038/srep46294
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869
Chen, Y., Tournayre, O., Tian, H., & Lougheed, S. C. (2023). Assessing the breeding phenology of a threatened frog species using eDNA and automatic acoustic monitoring. PeerJ, 11, e14679. https://doi.org/10.7717/peerj.14679
Clare, E.L., Economou, C.K., Faulkes, C.G., Gilbert, J.D., Bennett, F., Drinkwater, R. and Littlefair, J.E., 2021. eDNAir: proof of concept that animal DNA can be collected from air sampling. PeerJ, 9, p.e11030. https://doi.org/10.7717/peerj.11030
Cristescu, M. E. (2019). Can environmental RNA revolutionize biodiversity science? Trends in Ecology & Evolution, 34(8), 694-697. https://doi.org/10.1016/j.tree.2019.05.003
Curd, E. E., Gold, Z., Kandlikar, G. S., Gomer, J., Ogden, M., O’Connell, T., … & Meyer, R. S. (2019). Anacapa Toolkit: An environmental DNA toolkit for processing multilocus metabarcode datasets. Methods in Ecology and Evolution, 10(9), 1469-1475. https://doi.org/10.1111/2041-210X.13214
Davis, C. N., Tyson, F., Cutress, D., Davies, E., Jones, D. L., Brophy, P. M., … & Jones, R. A. (2020). Rapid detection of Galba truncatula in water sources on pasture-land using loop-mediated isothermal amplification for control of trematode infections. Parasites & Vectors, 13, 1-11. https://doi.org/10.1186/s13071-020-04371-0
Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L., … & Eveson, J. P. (2019). Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Molecular Ecology, 28(2), 391-406. https://doi.org/10.1111/mec.14734
Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a natural river. PloS One, 9(2), e88786. https://doi.org/10.1371/journal.pone.0088786
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., … & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872-5895. https://doi.org/10.1111/mec.14350
Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J. C., & Altermatt, F. (2016). Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications, 7(1), 12544. https://doi.org/10.1038/ncomms12544
Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. PloS One, 6(8), e23398. https://doi.org/10.1371/journal.pone.0023398
Després, V., Huffman, J.A., Burrows, S.M., Hoose, C., Safatov, A., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl, U. and Jaenicke, R., 2012. Primary biological aerosol particles in the atmosphere: a review. Tellus B: Chemical and Physical Meteorology, 64(1), p.15598. https://doi.org/10.3402/tellusb.v64i0.15598
Doi, H., Takahara, T., Minamoto, T., Matsuhashi, S., Uchii, K., & Yamanaka, H. (2015a). Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environmental Science & Technology, 49(9), 5601-5608. https://doi.org/10.1021/acs.est.5b00253
Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., & Minamoto, T. (2015b). Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS One, 10(3), e0122763. https://doi.org/10.1371/journal.pone.0122763
Dong, L., Meng, Y., Sui, Z., Wang, J., Wu, L., & Fu, B. (2015). Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Nature Scientific Reports, 5, 13174. https://doi.org/10.1038/srep13174
Drinkwater, R., Jucker, T., Potter, J.H., Swinfield, T., Coomes, D.A., Slade, E.M., Gilbert, M.T.P., Lewis, O.T., Bernard, H., Struebig, M.J. and Clare, E.L. (2021). Leech blood‐meal invertebrate‐derived DNA reveals differences in Bornean mammal diversity across habitats. Molecular Ecology, 30(13), pp.3299-3312. https://doi.org/10.1111/mec.15724
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
Elbrecht, V., & Leese, F. (2017a). PrimerMiner: an R package for development and in silico validation of DNA metabarcoding primers. Methods in Ecology and Evolution, 8(5), 622-626. https://doi.org/10.1111/2041-210X.12687
Elbrecht, V., & Leese, F. (2017b). Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Frontiers in Environmental Science, 5, 11. https://doi.org/10.3389/fenvs.2017.00011
Elbrecht, V., Taberlet, P., Dejean, T., Valentini, A., Usseglio-Polatera, P., Beisel, J. N., … & Leese, F. (2016). Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ, 4, e1966. https://doi.org/10.7717/peerj.1966
Escudié, F., Auer, L., Bernard, M., Mariadassou, M., Cauquil, L., Vidal, K., … & Pascal, G. (2018). FROGS: find, rapidly, OTUs with galaxy solution. Bioinformatics, 34(8), 1287- 1294. https://doi.org/10.1093/bioinformatics/btx791
Feng, W., Bulté, G., & Lougheed, S. C. (2020). Environmental DNA surveys help to identify winter hibernacula of a temperate freshwater turtle. Environmental DNA, 2(2), 200-209. https://doi.org/10.1002/edn3.58
Ficetola, G. F., Coissac, E., Zundel, S., Riaz, T., Shehzad, W., Bessière, J., … & Pompanon, F. (2010). An in silico approach for the evaluation of DNA barcodes. BMC Genomics, 11, 1-10. http://www.biomedcentral.com/1471-2164/11/434
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters, 4(4), 423-425. https://doi.org/10.1098/rsbl.2008.0118
Forootan, A., Sjöback, R., Björkman, J., Sjögreen, B., Linz, L., & Kubista, M. (2017). Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomolecular Detection and Quantification, 12, 1-6. https://doi.org/10.1016/j.bdq.2017.04.001
Freeland, J. R. (2017). The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome, 60(4), 358-374. https://doi.org/10.1139/gen-2016-0100
Galan, M., Pons, J. B., Tournayre, O., Pierre, E., Leuchtmann, M., Pontier, D., & Charbonnel, N. (2018). Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Molecular Ecology Resources, 18(3), 474-489. https://doi.org/10.1111/1755-0998.12749
Ganguli, A., Mostafa, A., Berger, J., Aydin, M. Y., Sun, F., Ramirez, S. A. S. D., … & Bashir, R. (2020). Rapid isothermal amplification and portable detection system for SARS-CoV-2. Proceedings of the National Academy of Sciences, 117(37), 22727-22735. https://doi.org/10.1073/pnas.2014739117
Garrett, N.R., Watkins, J., Francis, C.M., Simmons, N.B., Ivanova, N., Naaum, A., Briscoe, A., Drinkwater, R. and Clare, E.L., 2023. Out of thin air: Surveying tropical bat roosts through air sampling of eDNA. PeerJ, 11, p.e14772. https://doi.org/10.7717/peerj.14772
Garrett, N.R., Watkins, J., Simmons, N.B., Fenton, B., Maeda‐Obregon, A., Sanchez, D.E., Froehlich, E.M., Walker, F.M., Littlefair, J.E. and Clare, E.L., 2023. Airborne eDNA documents a diverse and ecologically complex tropical bat and other mammal community. Environmental DNA, 5(2), pp.350-362. https://doi.org/10.1002/edn3.385
Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P., & Ramana Murthy, M. V. (2019). A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Reviews in Environmental Science and Bio/Technology, 18, 389-411. https://doi.org/10.1007/s11157-019-09501-4
Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A., … & Taberlet, P. (2016). Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution, 7(11), 1299-1307. https://doi.org/10.1111/2041-210X.12595
Hakimzadeh, A., Abdala Asbun, A., Albanese, D., Bernard, M., Buchner, D., Callahan, B., … & Anslan, S. (2023). A pile of pipelines: An overview of the bioinformatics software for metabarcoding data analyses. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13847
Hallam, J., Clare, E. L., Jones, J. I., & Day, J. J. (2021). Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environmental DNA, 3(6), 1247-1266. https://doi.org/10.1002/edn3.241
Hartman, L. J., Coyne, S. R., & Norwood, D. A. (2005). Development of a novel internal positive control for Taqman based assays. Molecular and Cellular Probes, 19(1), 51-59. https://doi.org/10.1016/j.mcp.2004.07.006
Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1), S96-S99. https://doi.org/10.1098/rsbl.2003.0025
Hechler, R. M., & Cristescu, M. E. (2024). Revealing population demographics with environmental RNA. Molecular Ecology Resources, e13951. https://doi.org/10.1111/1755-0998.13951
Higuchi, R., Fockler, C., Dollinger, G., & Watson, R. (1993). Kinetic PCR analysis: realtime monitoring of DNA amplification reactions. Bio/technology, 11(9), 1026-1030. https://doi.org/10.1038/nbt0993-1026
Hinlo, R., Gleeson, D., Lintermans, M., & Furlan, E. (2017). Methods to maximize recovery of environmental DNA from water samples. PloS One, 12(6), e0179251. https://doi.org/10.1371/journal.pone.0179251
Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., … & Little, D. P. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794-12797. https://doi.org/10.1073/pnas.0905845106
Hunter, M. E., Dorazio, R. M., Butterfield, J. S., Meigs-Friend, G., Nico, L. G., & Ferrante, J. A. (2017). Detection limits of quantitative and digital PCR assays and their influence in presence–absence surveys of environmental DNA. Molecular Ecology Resources, 17(2), 221-229. https://doi.org/10.1111/1755-0998.12619
Hunter, M. E., Ferrante, J. A., Meigs-Friend, G., & Ulmer, A. (2019). Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Scientific Reports, 9(1), 5259. https://doi.org/10.1038/s41598-019-40977-w
Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761-2764. https://doi.org/10.1128/jcm.01228-07
Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
Johnson, M.D., Barnes, M.A., Garrett, N.R. and Clare, E.L., 2023. Answers blowing in the wind: Detection of birds, mammals, and amphibians with airborne environmental DNA in a natural environment over a yearlong survey. Environmental DNA, 5(2), pp.375-387. https://doi.org/10.1002/edn3.388
Johnson, M.D., Cox, R.D. and Barnes, M.A., 2019. The detection of a non-anemophilous plant species using airborne eDNA. PLoS One, 14(11), p.e0225262. https://doi.org/10.1371/journal.pone.0225262
Kagzi, K., Hechler, R. M., Fussmann, G. F., & Cristescu, M. E. (2022). Environmental RNA degrades more rapidly than environmental DNA across a broad range of pH conditions. Molecular Ecology Resources, 22(7), 2640-2650. https://doi.org/10.1111/1755-0998.13655
Kagzi, K., Millette, K. L., Littlefair, J. E., Pochon, X., Wood, S. A., Fussmann, G. F., & Cristescu, M. E. (2023). Assessing the degradation of environmental DNA and RNA based on genomic origin in a metabarcoding context. Environmental DNA, 5(5), 1016- 1031. https://doi.org/10.1002/edn3.437
Kamel, B., Laidemitt, M. R., Lu, L., Babbitt, C., Weinbaum, O. L., Mkoji, G. M., & Loker, E. S. (2021). Detecting and identifying Schistosoma infections in snails and aquatic habitats: A systematic review. PLoS Neglected Tropical Diseases, 15(3), e0009175. https://doi.org/10.1371/journal.pntd.0009175
Katz, A. D., Tetzlaff, S. J., Johnson, M. D., Noble, J. D., Rood, S., Maki, D., & Sperry, J. H. (2023). Molecular identification and environmental DNA detection of gill lice ectoparasites associated with Brook Trout declines. Transactions of the American Fisheries Society, 152(6), 788-808. https://doi.org/10.1002/tafs.10439
Keck, F., Blackman, R. C., Bossart, R., Brantschen, J., Couton, M., Hürlemann, S., Kirschner, D., Locher, N., Zhang, H., & Altermatt, F. (2021). Meta-analysis shows both congruence and complementarity of DNA metabarcoding to traditional methods for biological community assessment. bioRxiv, 2021-06. https://doi.org/10.1101/2021.06.29.450286
Kelly, R. P., Shelton, A. O., & Gallego, R. (2019). Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Scientific Reports, 9(1), 12133. https://doi.org/10.1038/s41598-019-48546-x
Kirse, A., Bourlat, S. J., Langen, K., & Fonseca, V. G. (2021). Metabarcoding malaise traps and soil eDNA reveals seasonal and local arthropod diversity shifts. Scientific Reports, 11(1), 10498. https://doi.org/10.1038/s41598-021-89950-6
Klymus, K. E., Merkes, C. M., Allison, M. J., Goldberg, C. S., Helbing, C. C., Hunter, M. E., Jackson, C. A., Lance, R. F., Mangan, A. M., Monroe, E. M., Piaggio, A. J., Stokdyk, J. P., Wilson, C.C., & Richter, C. A. (2020a). Reporting the limits of detection and quantification for environmental DNA assays. Environmental DNA, 2(3), 271-282. https://doi.org/10.1002/edn3.29
Klymus, K. E., Ramos, D. V. R., Thompson, N. L., & Richter, C. A. (2020b). Development and testing of species-specific quantitative PCR assays for environmental DNA applications. JoVE (Journal of Visualized Experiments), (165), e61825. https://doi.org/10.3791/61825
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79(17), 5112-5120. https://doi.org/10.1128/AEM.01043-13
Kreader, C. A. (1996). Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Applied and Environmental Microbiology, 62(3), 1102-1106. https://doi.org/10.1128/aem.62.3.1102-1106.1996
Kronenberger, J. A., Wilcox, T. M., Mason, D. H., Franklin, T. W., McKelvey, K. S., Young, M. K., & Schwartz, M. K. (2022). eDNAssay: A machine learning tool that accurately predicts qPCR cross-amplification. Molecular Ecology Resources, 22(8), 2994-3005. https://doi.org/10.1111/1755-0998.13681
Kubista, M. Prime time for qPCR – Raising the quality bar. (2014). European Pharmaceutical Review, 19(3), 63–67.
Kudoh, A., Minamoto, T. and Yamamoto, S., (2020). Detection of herbivory: eDNA detection from feeding marks on leaves. Environmental DNA, 2(4), pp.627-634. https://doi.org/10.1002/edn3.113
Kumar, G., Eble, J.E., & Gaither, M.R. (2020). A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA. Molecular Ecology Resources, 20(1), 29-39. https://doi.org/10.1111/1755-0998.13107
Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., & Taylor, M. I. (2019). How quantitative is metabarcoding: A meta-analytical approach. Molecular Ecology, 28(2), 420-430. https://doi.org/10.1111/mec.14920
Langlois, V. S., Allison, M. J., Bergman, L. C., To, T. A., & Helbing, C. C. (2021). The need for robust qPCR-based eDNA detection assays in environmental monitoring and species inventories. Environmental DNA, 3(3), 519-527. https://doi.org/10.1002/edn3.164
Latham, S., Hughes, E., Budgen, B., & Morley, A. (2023). Inhibition of the PCR by genomic DNA. PLoS One, 18(4), e0284538. https://doi.org/10.1371/journal.pone.0284538
Lawson Handley, L., Read, D. S., Winfield, I. J., Kimbell, H., Johnson, H., Li, J., Hanh, C., Blackman, R., Wilcox, R., Donnelly, R., Szitenberg, A., & Hänfling, B. (2019). Temporal and spatial variation in distribution of fish environmental DNA in England’s largest lake. Environmental DNA, 1(1), 26-39. https://doi.org/10.1002/edn3.5
Littlefair, J. E., Rennie, M. D., & Cristescu, M. E. (2022). Environmental nucleic acids: A field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Molecular Ecology Resources, 22(8), 2928-2940. https://doi.org/10.1111/1755-0998.13671
Littlefair, J.E., Allerton, J.J., Brown, A.S., Butterfield, D.M., Robins, C., Economou, C.K., Garrett, N.R. and Clare, E.L., 2023. Air-quality networks collect environmental DNA with the potential to measure biodiversity at continental scales. Current Biology, 33(11), pp.R426-R428. https://doi.org/10.1016/j.cub.2023.04.036
Lynggaard, C., Bertelsen, M.F., Jensen, C.V., Johnson, M.S., Frøslev, T.G., Olsen, M.T. and Bohmann, K., 2022. Airborne environmental DNA for terrestrial vertebrate community monitoring. Current Biology, 32(3), pp.701-707. https://doi.org/10.1016/j.cub.2021.12.014
Lynggaard, C., Calvignac-Spencer, S., Chapman, C.A., Kalbitzer, U., Leendertz, F.H., Omeja, P.A., Opito, E.A., Sarkar, D., Bohmann, K. and Gogarten, J.F. (2023). Vertebrate environmental DNA from leaf swabs. Current Biology, 33(16), pp.R853-R854. https://doi.org/10.1016/j.cub.2023.06.031
Lynggaard, C., Frøslev, T.G., Johnson, M.S., Olsen, M.T. and Bohmann, K., 2024. Airborne environmental DNA captures terrestrial vertebrate diversity in nature. Molecular Ecology Resources, 24(1), p.e13840. https://doi.org/10.1111/1755-0998.13840
Macher, T. H., Arle, J., Beermann, A. J., Frank, L., Hupało, K., Koschorreck, J., … & Leese, F. Is it worth the extra mile? Comparing environmental DNA and RNA metabarcoding for vertebrate and invertebrate biodiversity surveys in a lowland stream. DNA metabarcoding for the ecological status assessment in streamsvalidation, plausibility check and intercalibration of the new assessment method, PhD thesis, Universität Duisburg-Essen, Chapter 4.3, 135-154.
Macher, T.H., Schütz, R., Hörren, T., Beermann, A.J. and Leese, F., 2023. It’s raining species: Rainwash eDNA metabarcoding as a minimally invasive method to assess tree canopy invertebrate diversity. Environmental DNA, 5(1), pp.3-11. https://doi.org/10.1002/edn3.372
Magoč, T., & Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
Mahé, F., Rognes, T., Quince, C., De Vargas, C., & Dunthorn, M. (2015). Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ, 3, e1420. https://doi.org/10.7717/peerj.1420
Mahon, A. R., Jerde, C. L., Galaska, M., Bergner, J. L., Chadderton, W. L., Lodge, D. M., Hunter, M. E., & Nico, L. G. (2013). Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS One, 8(3), e58316. https://doi.org/10.1371/journal.pone.0058316
Majaneva, M., Diserud, O. H., Eagle, S. H., Boström, E., Hajibabaei, M., & Ekrem, T. (2018). Environmental DNA filtration techniques affect recovered biodiversity. Scientific Reports, 8(1), 4682. https://doi.org/10.1038/s41598-018-23052-8
Mao, X., Liu, C., Tong, H., Chen, Y., & Liu, K. (2019). Principles of digital PCR and its applications in current obstetrical and gynecological diseases. American Journal of Translational Research, 11(12), 7209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943456/
Maracle, S. R., Tournayre, O., Windle, M. J., Cormier, E., Schwartz, K., Wylie-Arbic, M., Rundle, E., Perron, M. A., Francis, A., & Lougheed, S. C. (2024). Nearshore fish diversity changes with sampling method and human disturbance: Comparing eDNA metabarcoding and seine netting along the Upper St. Lawrence River. Journal of Great Lakes Research, 102317. https://doi.org/10.1016/j.jglr.2024.102317
Marshall, N. T., Vanderploeg, H. A., & Chaganti, S. R. (2021). Environmental (e)RNA advances the reliability of eDNA by predicting its age. Scientific Reports, 11(1), 2769. https://doi.org/10.1038/s41598-021-82205-4
Martin, D. I., Ross, R., Quetin, L., & Murray, A. (2006). Molecular approach (PCRDGGE) to diet analysis in young Antarctic krill Euphausia Superba. Marine Ecology Progress Series, 319 (August), 155–65. https://doi.org/10.3354/meps319155
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10–12. https://doi.org/10.14806/ej.17.1.200
Mathon, L., Valentini, A., Guérin, P., Normandeau, E., Noel, C., Lionnet, C., Boulanger, E., Thuiller, W., Bernatchez, L., Mouillot, D., Dejean, T., & Manel, S. (2021). Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Molecular Ecology Resources, 21(7), 2565–79. https://doi.org/10.1111/1755-0998.13430
Mauvisseau, Q., Davy-Bowker, J., Bulling, M., Brys, R., Neyrinck, S., Troth, C., & Sweet, M. (2019). Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate. Scientific Reports, 9(1), 14064. https://doi.org/10.1038/s41598-019-50571-9
Mauvisseau, Q., Harper, L. R., Sander, M., Hanner, R.H., Kleyer, H., & Deiner, K. (2022). The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environmental Science & Technology, 56(9): 5322-5333. https://doi.org/10.1021/acs.est.1c07638
McKee, A. M., Spear, S. F., & Pierson, T. D. (2015). The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biological Conservation, 183, 70-76. https://doi.org/10.1016/j.biocon.2014.11.031
Mendoza, M. L. Z., Sicheritz-Ponten, T., & Gilbert, M. T. P. (2015). Environmental genes and genomes: understanding the differences and challenges in the approaches and software for their analyses. Briefings in Bioinformatics, 16(5), 745-758. https://doi.org/10.1093/bib/bbv001
Mifflin, T.E. (2007). Setting up a PCR laboratory. Cold Spring Harbor Protocols, 14. https://doi.org/10.1101/pdb.top14
Milla, L., Schmidt-Lebuhn, A., Bovill, J., & Encinas-Viso, F. (2022). Monitoring of honey bee floral resources with pollen DNA metabarcoding as a complementary tool to vegetation surveys. Ecological Solutions and Evidence, 3(1), e12120. https://doi.org/10.1002/2688-8319.12120
Milligan, J. N., Shroff, R., Garry, D. J., & Ellington, A. D. (2018). Evolution of a thermophilic strand-displacing polymerase using high-temperature isothermal compartmentalized self-replication. Biochemistry, 57(31), 4607–19. https://doi.org/10.1021/acs.biochem.8b00200
Mishra, S., Goyal, D., & Phurailatpam, L. (2021). Targeted 16S rRNA gene and ITS2 amplicon sequencing of leaf and spike tissues of Piper longum identifies new candidates for bioprospecting of bioactive compounds. Archives of Microbiology, 203(7), 3851-3867. https://doi.org/10.1007/s00203-021-02356-w
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamanaka, H., Araki, H., & Iwasaki, W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Royal Society Open Science, 2(7), 150088. https://doi.org/10.1098/rsos.150088
Mlaga, K. D., Mathieu, A., Beauparlant, C. J., Ott, A., Khodr, A., Perin, O., & Droit, A. (2021). HCK and ABAA: A newly designed pipeline to improve fungi metabarcoding analysis. Frontiers in Microbiology, 12, 640693. https://doi.org/10.3389/fmicb.2021.640693
Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289(1), 150-154. https://doi.org/10.1006/bbrc.2001.5921
Nathan, L. M., Simmons, M., Wegleitner, B. J., Jerde, C. L., and Mahon, A. R. (2014). Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environmental Science & Technology, 48(21), 12800–806. https://doi.org/10.1021/es5034052
Newton, J.P., Allentoft, M.E., Bateman, P.W., van der Heyde, M. and Nevill, P., 2025. Targeting terrestrial vertebrates with eDNA: Trends, perspectives, and considerations for sampling. Environmental DNA, 7(1), p.e70056. https://doi.org/10.1002/edn3.70056
Nicholson, A., McIsaac, D., MacDonald, C., Gec, P., Mason, B.E., Rein, W., Wrobel, J., de Boer, M., Milián-García, Y., & Hanner, R.H. (2020). An analysis of metadata reporting in freshwater environmental DNA research calls for the development of best practice guidelines. Environmental DNA, 2, 343–349. https://doi.org/10.1002/edn3.81
Nordstrom, B, Budd, A., Mitchell, N., Cornish, C., Byrne, M., Kuchling, G., & Jarman, S. (2023). Environmental DNA reflects spatial distribution of a rare turtle in a lentic wetland assisted colonization site. Environmental DNA, 6(1), e507. https://doi.org/10.1002/edn3.507
Nørgaard, L., Olesen, C. R., Trøjelsgaard, K., Pertoldi, C., Nielsen, J. L., Taberlet, P., Ruiz-González, A., De Barba, M., & Iacolina, L. (2021). eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants. Scientific Reports, 11(1), 6820. https://doi.org/10.1038/s41598-021-85488-9
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63. https://doi.org/10.1093/nar/28.12.e63
Oehm, J., Juen, A., Nagiller, K., Neuhauser, S., & Traugott, M. (2011). Molecular scatology: How to improve prey DNA detection success in avian faeces? Molecular Ecology Resources, 11(4), 620–628. https://doi.org/10.1111/j.1755-0998.2011.03001.x
Ogram, A., Sayler, G. S., & Barkay, T. (1987). The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods, 7(2), 57–66. https://doi.org/10.1016/0167-7012(87)90025-X
Olson, Z. H., Briggler, J. T., Williams, R. N., Olson, Z. H., Briggler, J. T., & Williams, R. N. (2012). An eDNA approach to detect Eastern Hellbenders (Cryptobranchus a. Alleganiensis) using samples of water. Wildlife Research, 39(7), 629–636. https://doi.org/10.1071/WR12114
Osathanunkul, M., & Suwannapoom, C. (2024). A comparative study on eDNA-based detection of Siamese bat catfish (Oreoglanis siamensis) in wet and dry conditions. Scientific Reports, 14(1), 8885. https://doi.org/10.1038/s41598-024-58752-x
Parsley, M. B., & Goldberg, C. S. (2023). Environmental RNA can distinguish life stages in amphibian populations. Molecular Ecology Resources, 24(4), e13857. https://doi.org/10.1111/1755-0998.13857
Pawlowski, J., Apothéloz-Perret-Gentil, L., & Altermatt, F. (2020). Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology, 29(22), 4258–4264. https://doi.org/10.1111/mec.15643
Porter, T. M., and Hajibabaei, M. (2018). Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Molecular Ecology, 27(2), 313–338. https://doi.org/10.1111/mec.14478
Puechmaille, S. J., & Teeling, E. C. (2014). Non-invasive genetics can help find rare species: A case study with Rhinolophus Mehelyi and R. Euryale (Rhinolophidae: Chiroptera) in Western Europe. Mammalia, 78(2), 251–255. https://doi.org/10.1515/mammalia-2013-0040
Rådström, P., Knutsson, R., Wolffs, P., Lövenklev, M., & Löfström, C. (2004). Pre-PCR processing: strategies to generate PCR-compatible samples. Molecular Biotechnology, 26: 133-146. https://doi.org/10.1385/mb:26:2:133
Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: The barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Notes, 7(3), 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
Ririe, K. M., Rasmussen, R. P., Wittwer, C. T. (1997). Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry, 245(2), 154-160. https://doi.org/10.1006/abio.1996.9916
Roger, F., Ghanavi, H.R., Danielsson, N., Wahlberg, N., Löndahl, J., Pettersson, L.B., Andersson, G.K., Boke Olén, N. and Clough, Y., 2022. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—A proof of concept from the field. Environmental DNA, 4(4), pp.790-807. https://doi.org/10.1002/edn3.290
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4(October), e2584. https://doi.org/10.7717/peerj.2584
Rourke, M. L., Fowler, A. M., Hughes, J. M., Broadhurst, M. K., DiBattista, J. D., Fielder, S., Walburn, J. W., & Furlan, E. M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4(1), 9–33. https://doi.org/10.1002/edn3.185
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17(January), e00547. https://doi.org/10.1016/j.gecco.2019.e00547
Sahoo, P. R., Sethy, K., Mohapatra, S., & Panda, D. (2016). Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases. Veterinary World, 9(5), 465–469. https://doi.org/10.14202/vetworld.2016.465-469
Schenk, J., Geisen, S., Kleinbölting, N., & Traunspurger, W. (2019). Metabarcoding data allow for reliable biomass estimates in the most abundant animals on Earth. Metabarcoding and Metagenomics, 3, e46704. https://doi.org/10.3897/mbmg.3.46704
Scherczinger, C. A., Ladd, C., Bourke, M. T., Adamowicz, M. S., Johannes, P. M., Scherczinger, R., Beesley, T., & Lee, H. C., (1999). A systematic analysis of PCR contamination. Journal of Forensic Science, 44, 1042-1045.
Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE, 6(12), e27310. https://doi.org/10.1371/journal.pone.0027310.
Seki, M., Kilgore, P. E., Kim, E. J., Ohnishi, M., Hayakawa, S., Kim, D. W. (2018). Loopmediated isothermal amplification methods for diagnosis of bacterial meningitis. Frontiers in Pediatrics, 6, 2296-2360. https://doi.org/10.3389/fped.2018.00057
Sengupta, M. E., Hellström, M., Kariuki, H. C., Olsen, A., Thomsen, P. F., Mejer, H., Willerslev, E., Mwanje, M. T., Madsen, H., Kristensen, T. K., Stensgaard, A., & Vennervald, B. J. (2019). Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proceedings of the National Academy of Sciences, 116(18), 8931–8940. https://doi.org/10.1073/pnas.1815046116
Sepulveda, A.J., Hutchins, P.R., Forstchen, M., Mckeefry, M. N., & Swigris, A.M. (2020). The Elephant in the lab (and field): Contamination in aquatic environmental DNA studies. Frontiers in Ecology and Evolution, 8, 609973. https://doi.org/10.3389/fevo.2020.609973
Shogren, A. J., Tank, J. L., Andruszkiewicz, E., Olds, B., Mahon, A. R., Jerde, C. L., & Bolster, D. 2017. Controls on eDNA movement in streams: Transport, retention, and resuspension. Scientific Reports, 7(1), 5065. https://doi.org/10.1038/s41598-017-05223-1
Singer, G. A., Shekarriz, S., McCarthy, A., Fahner, N., & Hajibabaei, M. (2020). The utility of a metagenomics approach for marine biomonitoring. BioRxiv, 2020-03. https://doi.org/10.1101/2020.03.16.993667
Slatko, B. E., Gardner, A. F., & Ausubel, F. M. (2018). Overview of next-generation sequencing technologies. Current Protocols In Molecular Biology, 122(1), e59. https://doi.org/10.1002/cpmb.59
Soraka, M., Wasowicz, B., & Rymaszewska, A. (2021). Loop-mediated isothermal amplification (LAMP): The better sibling of PCR. Cells, 10(8), 1931. https://doi.org/10.3390%2Fcells10081931
Stewart, K. A. (2019). Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation, 28(5), 983– 1001. https://doi.org/10.1007/s10531-019-01709-8
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, Special Issue: Environmental DNA: A powerful new tool for biological conservation, 183(March), 85–92. https://doi.org/10.1016/j.biocon.2014.11.038
Taberlet, P, Bonin, A., Zinger, L., & Coissac, E. (2018). Environmental DNA: For Biodiversity Research and Monitoring. Illustrated edition. Oxford, United Kingdom: Oxford University Press.
Taberlet, P, Coissac, E., Hajibabaei, & Rieseberg, M. L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x
Takasaki, K., Aihara, H., Imanaka, T., Matsudaira, T., Tsukahara, K., Usui, A., Osaki, S., & Doi, H. (2021). Water pre-filtration methods to improve environmental DNA detection by real-time PCR and metabarcoding. PLoS ONE, 16(5), e0250162. https://doi.org/10.1371/journal.pone.0250162
Tanner, N. A., Zhang, Y., & Evans Jr., T. C. (2015). Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. Biotechniques, 58(2), 59-68. https://doi.org/10.2144/000114253
Thalinger, B., Rieder, A., Teuffenbach, A., Pütz, Y., Schwerte, T., Wanzenböck, J., & Traugott, M. (2021a). The effect of activity, energy use, and species identity on environmental DNA shedding of freshwater fish. Frontiers in Ecology and Evolution, 9, 623718. https://doi.org/10.3389/fevo.2021.623718
Thalinger, B., Deiner, K., Harper, L. R., Rees, H. C., Blackman, R. C., Sint, D., Traugott, M., Goldberg, C. S., & Bruce, K. (2021b). A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environmental DNA, 3(4), 823–836. https://doi.org/10.1002/edn3.189
Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, Special Issue: Environmental DNA: A Powerful New Tool for Biological Conservation, 183 (Supplement C), 4–18. https://doi.org/10.1016/j.biocon.2014.11.019
Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen, M., & Willerslev, E. (2012). Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE, 7(8), e41732. https://doi.org/10.1371/journal.pone.0041732
Thongjued, K., Chotigeat, W., Bumrungsri, S., Thanakiatkrai, P., & Kitpipit, T. (2021). Direct PCR-DGGE technique reveals Wrinkle-Lipped Free-Tailed Bat (Chaerephon Plicatus Buchanan, 1800) predominantly consume planthoppers and mosquitoes in central Thailand. Acta Chiropterologica, 23(1), 93–106. https://doi.org/10.3161/15081109ACC2021.23.1.008
Thuillet, A.C., Morisot, D., Renno, J.F., Scarcelli, N., Serret, J. and Mariac, C. (2024). Picturing plant biodiversity from airborne environmental DNA. bioRxiv 2024.01.11.571706; DOI: https://doi.org/10.1101/2024.01.11.571706
Tournayre, O., Leuchtmann, M., Filippi-Codaccioni, O., Trillat, M., Piry, S., Pontier, D., Charbonnel, N., & Galan, M. (2020). In silico and empirical evaluation of twelve metabarcoding primer sets for insectivorous diet analyses. Ecology and Evolution, 10(13), 6310–6332. https://doi.org/10.1002/ece3.6362
Tournayre, O., Littlefair, J.E., Garrett, N.R., Allerton, J.J., Brown, A.S., Cristescu, M.E. and Clare, E.L., 2025. First national survey of terrestrial biodiversity using airborne eDNA. bioRxiv 2025.04.07.647580; DOI: https://doi.org/10.1101/2025.04.07.647580
Tournayre, O., Tian, H., Lougheed, D. R., Windle, M. J. S., Lambert, S., Carter, J., Sun, Z., Ridal, J., Wang, Y., Cumming, B. F., Arnott, S. E., & Lougheed, S. C. (2024). How to barcode (almost all) freshwater biodiversity. Environmental DNA, 6(4), e590. https://doi.org/10.1002/edn3.590
Tournayre, O., Wolfe, R., McCurdy-Adams, H., Chabot, A. A., & Lougheed, S. C. (2023). A species-specific digital PCR assay for the endangered blue racer (Coluber constrictor foxii) in Canada. Genome, 66(9). 251-260. https://doi.org/10.1139/gen-2023-0008
Turner, C. R., Barnes, M. A., Xu, C. C. Y., Jones, S. E., Jerde, C. L., & Lodge, D. M. (2014). Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676–684. https://doi.org/10.1111/2041-210X.12206
Vanderpool, D. D., Wilcox T. M., Young, M. K., Pilgrim, K. L., & Schwartz, M. K. (2024). Simultaneous species detection and discovery with environmental DNA metabarcoding: A freshwater mollusk case study. Ecology and Evolution, 14(2), e11020. https://doi.org/10.1002/ece3.11020
Vythalingam, L. M., Hossain, M. A. M., & Bhassu, S. (2021). Rapid in-situ detection kit (RisK): Development of loop-mediated isothermal amplification (LAMP) assay for the rapid identification of selected invasive alien fish in Malaysian freshwaters. Molecular and Cellular Probes, 55 (February), 101683. https://doi.org/10.1016/j.mcp.2020.101683
Walz, K., Yamahara, K., Michisaki, R., & Chavez, F. 2019. Environmental DNA (eDNA) extraction using Qiagen DNeasy Blood and Tissue Kit V.2. Protocols.io. https://doi.org/10.17504/protocols.io.n2udgew
Wang, H., Qi, J., Xiao, D., Wang, Z., & Tian, K. (2017). A re-evaluation of dilution for eliminating PCR inhibition in soil DNA samples. Soil Biology and Biochemistry, 106, 109-118. https://doi.org/10.1016/j.soilbio.2016.12.011
Wilcox, T. M., McKelvey, K. S., Young, M. K., Jane, S. F., Lowe, W. H., Whiteley, A. R., & Schwartz, M. K. (2013). Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS ONE, 8(3), e59520. https://doi.org/10.1371/journal.pone.0059520
Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. T. P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D. A., & Cooper, A. (2003). Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science, 300(5620), 791– 795. https://doi.org/10.1126/science.1084114
Williams, M. R., Stedtfeld, R. D., Engle, C., Salach, P., Fakher, U., Stedtfeld, T., Dreelin, E., Stevenson, R. J., Latimore, J., & Hashsham, S. A. (2017). Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE, 12(10), e0186462. https://doi.org/10.1371/journal.pone.0186462
Xia, Z., Johansson, M. L., Gao, Y., Zhang, L., Haffner, G. D., MacIsaac, H. J., & Zhan, A. (2018). Conventional versus real-time quantitative PCR for rare species detection. Ecology and Evolution, 8(23), 11799–11807. https://doi.org/10.1002/ece3.4636
Yates, M. C., Derry, A. M. & Cristescu, M. E. (2021). Environmental RNA: a revolution in ecological resolution? Trends in Ecology & Evolution, 36(7), 601-609. https://doi.org/10.1016/j.tree.2021.03.001
Yu, J., Young, R. G., Deeth, L. E., & Hanner, R. H. (2020). Molecular detection mapping and analysis platform for R (MDMAPR) facilitating the standardization, analysis, visualization, and sharing of qPCR data and metadata. PeerJ, 8, e9974. https://doi.org/10.7717/peerj.9974.
Zhang, C., Yan, L., Wang, L., Jin, Y. J., Chen, L., Shi, Y., & Wang, Q. 2015. The development and application of digital PCR (in Chinese). Fudan University Journal of Medical Science, 42, 786–789.
Zhang, D-X., & Hewitt, G. M. (1997). Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Molecular Biology, 6(2), 143- 150. https://doi.org/10.1111/j.1365-2583.1997.tb00082.x
Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: A fast and accurate Illumina paired-end read merger. Bioinformatics, 30(5): 614–620. https://doi.org/10.1093/bioinformatics/btt593
Zhu, G., Ye, X., Dong, Z., Lu, Y. C., Sun, Y., Liu, Y., McCormack, R., Gu, Y., & Liu, X. (2015). Highly sensitive droplet digital PCR method for detection of EGFR-activating mutations in plasma cell-free DNA from patients with advanced non-small cell lung cancer. Journal of Molecular Diagnostics, 17, 265–272. https://doi.org/10.1016/j.jmoldx.2015.01.004
Zhu, T., & Iwasaki, W. (2023). MultiBarcodeTools: Easy selection of optimal primers for eDNA multi-metabarcoding. Environmental DNA, 5(6), 1793-1808. https://doi.org/10.1002/edn3.499.499
Zinger, L., Benoiston, A.S., Cuenot, Y., Leroy, C., Louisanna, E., Moreau, L., Petitclerc, F., Piatscheck, F., Orivel, J., Richard-Hansen, C., & Hansen-Chaffard, L. (2025). Rainwash eDNA to monitor tropical rainforest biodiversity. bioRxiv 2025.02.26.640397; DOI: https://doi.org/10.1101/2025.02.26.640397